Calcium and potassium are important regulators of barrier homeostasis in murine epidermis.
نویسندگان
چکیده
Topical solvent treatment removes lipids from the stratum corneum leading to a marked increase in transepidermal water loss (TEWL). This disturbance stimulates a variety of metabolic changes in the epidermis leading to rapid repair of the barrier defect. Using an immersion system we explored the nature of the signal leading to barrier repair in intact mice. Initial experiments using hypotonic to hypertonic solutions showed that water transit per se was not the crucial signal. However, addition of calcium at concentrations as low as 0.01 mM inhibited barrier repair. Moreover, both verapamil and nifedipine, which block calcium transport into cells, prevented the calcium-induced inhibition of TEWL recovery. Additionally, trifluoroperazine or N-6-aminohexyl-5-chloro-1-naphthalenesulfonamide, which inhibit calmodulin, prevented the calcium-induced inhibition of TEWL recovery. Although these results suggest an important role for calcium in barrier homeostasis, calcium alone was only modestly effective in inhibiting TEWL recovery. Potassium alone (10 mM) and phosphate alone (5 mM) also produced a modest inhibition of barrier repair. Together, however, calcium and potassium produced a synergistic inhibition of barrier repair (control 50% recovery vs. calcium + potassium 0-11% recovery in 2.5 h). Furthermore, in addition to inhibiting TEWL recovery, calcium and potassium also prevented the characteristic increase in 3-hydroxy-3-glutaryl CoA reductase activity that occurs after barrier disruption. Finally, the return of lipids to the stratum corneum was also blocked by calcium and potassium. These results demonstrate that the repair of the epidermal permeability barrier after solvent disruption can be prevented by calcium, potassium, and phosphate. The repair process may be signalled by a decrease in the concentrations of these ions in the upper epidermis resulting from increased water flux leading to passive loss of these ions.
منابع مشابه
Photosynthesis Properties and Ion homeostasis of Different Pistachio Cultivar Seedlings in Response to Salinity Stress
Understanding mechanisms of salt tolerance, physiological responses to salt stress, and screening genotypes for breeding programs are important scientific issues remained to be investigated in pistachio. Therefore, current study was carried out to investigate response of different pistachio cultivars (G1, G2, Kaleghochi and UCB1) to salinity treatments (0.6 as control, 10, 20 dS m-1 using salin...
متن کاملThe splicing regulators Esrp1 and Esrp2 direct an epithelial splicing program essential for mammalian development
Tissue- and cell-type-specific regulators of alternative splicing (AS) are essential components of posttranscriptional gene regulation, necessary for normal cellular function, patterning, and development. Mice with ablation of Epithelial splicing regulatory protein (Esrp1) develop cleft lip and palate. Loss of both Esrp1 and its paralog Esrp2 results in widespread developmental defects with bro...
متن کاملGlucosylceramide synthase activity in murine epidermis: quantitation, localization, regulation, and requirement for barrier homeostasis.
Ceramides, which derive from the hydrolysis of glucosylceramide (GlcCer), are the predominant lipid species in the stratum corneum and are critical for epidermal permeability barrier homeostasis. UDP-glucose:ceramide glucosyltransferase (GlcCer synthase) (EC 2.4.1.80) catalyzes the glucosylation of ceramide to form GlcCer. Recently, we demonstrated a progressive increase in GlcCer synthase expr...
متن کاملA 3D self-organizing multicellular epidermis model of barrier formation and hydration with realistic cell morphology based on EPISIM
The epidermis and the stratum corneum (SC) as its outermost layer have evolved to protect the body from evaporative water loss to the environment. To morphologically represent the extremely flattened cells of the SC - and thereby the epidermal barrier - in a multicellular computational model, we developed a 3D biomechanical model (BM) based on ellipsoid cell shapes. We integrated the BM in the ...
متن کاملPotassium dependent rescue of a myopathy with core-like structures in mouse
Myopathies decrease muscle functionality. Mutations in ryanodine receptor 1 (RyR1) are often associated with myopathies with microscopic core-like structures in the muscle fiber. In this study, we identify a mouse RyR1 model in which heterozygous animals display clinical and pathological hallmarks of myopathy with core-like structures. The RyR1 mutation decreases sensitivity to activated calciu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 89 2 شماره
صفحات -
تاریخ انتشار 1992